Calculate linear predictor $$\text{par}^\top X$$ where \(X\) is the design matrix specified by the formula
Arguments
- data
(data.table) Covariate data, usually the output of the covariate model of a Trial object.
- mean
formula specifying design from 'data' or a function that maps x to the mean value. If NULL all main-effects of the covariates will be used
- par
(numeric) Regression coefficients (default zero). Can be given as a named list corresponding to the column names of
model.matrix- model
Optional model object (glm, mets::phreg, ...)
- offset
Optional offset variable name
- treatment
Optional name of treatment variable
- intercept
When FALSE the intercept will removed from the design matrix
- default.parameter
when
modelandtreatmentis specified, interaction terms betweentreatmentand all other covariates inmodelis added to the simulation model.default.parameterspecifies the default parameter of these extra parameters which can be changed individually with theparargument.- family
family (default 'gaussian(identity)'). The inverse link-function is used to map the mean to the linear predictor scale (if mean is given as a function)
- remove
variables that will be removed from input data (if formula is not specified)
- ...
Additional arguments passed to
meanfunction (see examples)
