Overview
connector provides a seamless and consistent interface for connecting to different data sources, such as as simple file storage systems and databases.
It also gives the option to use a central configuration file to manage your connections in your project, which ensures a consistent reference to the same data source across different scripts in your project, and enables you to easily switch between different data sources.
The connector package comes with the possibilities of creating connections to file system folders using connector_fs()
and general databases using connector_dbi()
, which is built on top of the DBI package.
connector also has a series of expansion packages that allows you to easily connect to more specific data sources:
-
{connector.databricks}
: Connect to Databricks -
{connector.sharepoint}
: Connect to SharePoint sites - connector.logger: Log connector actions, see also whirl for how to log scripts
Usage
The recommended way of using connector is to specify a common yaml configuration file in your project that contains the connection details to all your data sources.
A simple example creating connectors to both a folder and a database is shown below:
_connector.yml:
metadata:
path: !expr withr::local_tempdir()
datasources:
- name: "folder"
backend:
type: "connector_fs"
path: "{metadata.path}"
- name: "database"
backend:
type: "connector_dbi"
drv: "RSQLite::SQLite()"
dbname: ":memory:"
First we specify common metadata for the connectors, which here is a temporary folder that we want to use. Afterwards we specify the datasources needed in the project, and their specifications.
The first we name “folder”, specify the type to be connector_fs()
, and the path to the folder. The second is a database connector to an in memory SQLite database, that we specify using the connector_dbi()
type, which uses DBI::dbConnect()
to initalize the connection. Therefor we also give the DBI driver
to use, and arguments to it.
To connect and create the conenctors we use connect()
with the configuration file as input:
library(connector)
db <- connect("_connector.yml")
#> ────────────────────────────────────────────────────────────────────────────────
#> Connection to:
#> → folder
#> • connector_fs
#> • /var/folders/fx/71by3f551qzb5wkxt82cv15m0000gp/T//RtmpfTSxQB/file1c1d28730925
#> ────────────────────────────────────────────────────────────────────────────────
#> Connection to:
#> → database
#> • connector_dbi
#> • RSQLite::SQLite() and :memory:
print(db)
#> <connectors>
#> $folder <connector_fs>
#> $database <connector_dbi>
This creates a connectors
objects that contains each connector
. When printing the individual conenctor
you get the some general information on their methods and specifications.
print(db$database)
#> <connector_dbi>
#> Inherits from: <connector>
#> Registered methods:
#> • `disconnect_cnt.connector_dbi()`
#> • `list_content_cnt.connector_dbi()`
#> • `read_cnt.connector_dbi()`
#> • `remove_cnt.connector_dbi()`
#> • `tbl_cnt.connector_dbi()`
#> • `write_cnt.connector_dbi()`
#> Specifications:
#> • conn: <SQLiteConnection>
We are now ready to use the connectors
, so we can start by writing some data to the folder
one:
# Initially it is empty
db$folder |>
list_content_cnt()
#> character(0)
# Create some data
cars <- mtcars |>
tibble::as_tibble(rownames = "car")
# Write to folder as a parquet file
db$folder |>
write_cnt(x = cars, name = "cars.parquet")
# Now the folder contains the file
db$folder |>
list_content_cnt()
#> [1] "cars.parquet"
# And we can read it back in
db$folder |>
read_cnt(name = "cars.parquet")
#> # A tibble: 32 × 12
#> car mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 … 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 Hornet 4 D… 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 Hornet Spo… 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 Duster 360 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ℹ 22 more rows
Here the parquet format has been used, but when using a connector_fs()
it is possible to read and write several different file types. See read_file()
and write_file()
for more information.
For the database
connector it works in the same way:
# Initially no tables exists
db$database |>
list_content_cnt()
#> character(0)
# Write cars to the database as a table
db$database |>
write_cnt(x = cars, name = "cars")
# Now the cara table exists
db$database |>
list_content_cnt()
#> [1] "cars"
# And we can read it back in
db$database |>
read_cnt(name = "cars") |>
dplyr::as_tibble()
#> # A tibble: 32 × 12
#> car mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 … 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 Hornet 4 D… 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 Hornet Spo… 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 Duster 360 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ℹ 22 more rows
Useful links
For more information on how to use the package, see the following links:
-
connect()
for more documentation and how to specify the configuration file -
vignette("connector")
for more examples and how to use the package -
vignette("customize")
on how to create your own connector and customize behavior - NovoNordisk-OpenSource/R-packages for an overview of connector and other R packages published by Novo Nordisk