Methods mostly to extract information from model fit and inference. See details for more information on each method.
Value
estimand
/est
returns a data.frame
with columns Estimate
and
Std. Error
with the estimate and standard error of the estimand.
See coef()
and predict.glm()
for details on what is returned by the corresponding
methods.
Details
The function estimand (or short-hand version est) can be used to extract
a data.frame
with an estimated value and standard error of the estimand.
A method for the generic coef()
has been added for class rctglm
, which
extracts coefficient information from the underlying glm
fit
in the procedure. The same is true for the method defined for the predict()
generic.
The method for an rctglm
class object calls predict.glm()
on the glm
fit
contained within an rctglm
object.
See also
The generic rctglm()
which produces rctglm
class objects.
Examples
# Generate some data to showcase example
n <- 100
exposure_prob <- .5
dat_binom <- glm_data(
Y ~ 1+1.5*X1+2*A,
X1 = rnorm(n),
A = rbinom(n, 1, exposure_prob),
family = binomial()
)
# Fit the model
ate <- rctglm(formula = Y ~ .,
exposure_indicator = A,
exposure_prob = exposure_prob,
data = dat_binom,
family = binomial,
estimand_fun = "ate")
#>
#> ── Symbolic differentiation of estimand function ──
#>
#> ℹ Symbolically deriving partial derivative of the function 'psi1 - psi0' with respect to 'psi0' as: '-1'.
#> • Alternatively, specify the derivative through the argument
#> `estimand_fun_deriv0`
#> ℹ Symbolically deriving partial derivative of the function 'psi1 - psi0' with respect to 'psi1' as: '1'.
#> • Alternatively, specify the derivative through the argument
#> `estimand_fun_deriv1`
print(ate)
#>
#> Object of class rctglm
#>
#> Call: rctglm(formula = Y ~ ., exposure_indicator = A, exposure_prob = exposure_prob,
#> data = dat_binom, family = binomial, estimand_fun = "ate")
#>
#> Counterfactual control mean (psi_0=E[Y|X, A=0]) estimate: 0.6275
#> Counterfactual active mean (psi_1=E[Y|X, A=1]) estimate: 0.8418
#> Estimand function r: psi1 - psi0
#> Estimand (r(psi_1, psi_0)) estimate (SE): 0.2143 (0.07495)
estimand(ate)
#> Estimate Std. Error
#> 1 0.2143439 0.07495377
coef(ate)
#> (Intercept) X1 A
#> 0.6253111 1.4850566 1.5630501